Biological control of the terrestrial carbon sink
نویسنده
چکیده
This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on pho-tosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stom-atal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conduc-tance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance , which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimi-latory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO 2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity). However, in this ex-trapolation the action of soil biota is poorly understood although …
منابع مشابه
Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance
Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought, so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled ...
متن کاملPlant sink-source relationships and carbon isotopic labeling techniques . Taher Barzegar* and Fatemhe Nekounam
The concept of source and sink strength is presently well-recognized and accepted by the scientific community as a pertinent approach describing the mechanisms of carbohydrate partitioning into the different and competing organs at a whole plant or canopy scales. Sink–source relationships have a clear role in the size of sink organs. Besides the effect on organ size, sink/source ratio might also...
متن کاملThe First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle
PB 103 The six chapters (Chapters 10-15) in Part III consider the current and future carbon balance of terrestrial and aquatic ecosystems in North America. Although the amount of carbon exchanged between these ecosystems and the atmosphere each year through photosynthesis and plant and microbial respiration is large, the net balance for all of the ecosystems combined is currently a net sink of ...
متن کاملRecent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and ...
متن کاملA large and persistent carbon sink in the world's forests.
The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross ...
متن کاملEffect of increasing CO2 on the terrestrial carbon cycle.
Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Ou...
متن کامل